#include "../config.h" #include "rxvt.h" #ifdef KEYSYM_RESOURCE #include #include "keyboard.h" #include "command.h" //////////////////////////////////////////////////////////////////////////////// // default keycode translation map and keyevent handlers keysym_t keyboard_manager::stock_keymap[] = { /* examples */ /* keysym, state, range, handler, str */ //{XK_ISO_Left_Tab, 0, 1, keysym_t::NORMAL, "\033[Z"}, //{ 'a', 0, 26, keysym_t::RANGE_META8, "a" "%c"}, //{ 'a', ControlMask, 26, keysym_t::RANGE_META8, "" "%c"}, //{ XK_Left, 0, 4, keysym_t::LIST, ".\033[.DACB."}, //{ XK_Left, ShiftMask, 4, keysym_t::LIST, ".\033[.dacb."}, //{ XK_Left, ControlMask, 4, keysym_t::LIST, ".\033O.dacb."}, //{ XK_Tab, ControlMask, 1, keysym_t::NORMAL, "\033"}, //{ XK_apostrophe, ControlMask, 1, keysym_t::NORMAL, "\033"}, //{ XK_slash, ControlMask, 1, keysym_t::NORMAL, "\033"}, //{ XK_semicolon, ControlMask, 1, keysym_t::NORMAL, "\033"}, //{ XK_grave, ControlMask, 1, keysym_t::NORMAL, "\033"}, //{ XK_comma, ControlMask, 1, keysym_t::NORMAL, "\033"}, //{ XK_Return, ControlMask, 1, keysym_t::NORMAL, "\033"}, //{ XK_Return, ShiftMask, 1, keysym_t::NORMAL, "\033"}, //{ ' ', ShiftMask, 1, keysym_t::NORMAL, "\033"}, //{ '.', ControlMask, 1, keysym_t::NORMAL, "\033"}, //{ '0', ControlMask, 10, keysym_t::RANGE, "0" "\033"}, //{ '0', MetaMask|ControlMask, 10, keysym_t::RANGE, "0" "\033"}, //{ 'a', MetaMask|ControlMask, 26, keysym_t::RANGE, "a" "\033"}, }; static void output_string (rxvt_term *rt, const char *str) { if (strncmp (str, "command:", 8) == 0) rt->cmd_write ((unsigned char *)str + 8, strlen (str) - 8); else rt->tt_write ((unsigned char *)str, strlen (str)); } static void output_string_meta8 (rxvt_term *rt, unsigned int state, char *buf, int buflen) { if (state & rt->ModMetaMask) { #ifdef META8_OPTION if (rt->meta_char == 0x80) /* set 8-bit on */ { for (char *ch = buf; ch < buf + buflen; ch++) *ch |= 0x80; } else if (rt->meta_char == C0_ESC) /* escape prefix */ #endif { const unsigned char ch = C0_ESC; rt->tt_write (&ch, 1); } } rt->tt_write ((unsigned char *) buf, buflen); } static int format_keyrange_string (const char *str, int keysym_offset, char *buf, int bufsize) { size_t len = snprintf (buf, bufsize, str + 1, keysym_offset + str [0]); if (len >= (size_t)bufsize) { rxvt_warn ("format_keyrange_string: formatting failed, ignoring key.\n"); *buf = 0; } return len; } //////////////////////////////////////////////////////////////////////////////// // return: #bits of '1' #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3) # define bitcount(n) (__extension__ ({ uint32_t n__ = (n); __builtin_popcount (n); })) #else static int bitcount (uint16_t n) { int i; for (i = 0; n; ++i, n &= n - 1) ; return i; } #endif // return: priority_of_a - priority_of_b static int compare_priority (keysym_t *a, keysym_t *b) { // (the more '1's in state; the less range): the greater priority int ca = bitcount (a->state /* & OtherModMask */); int cb = bitcount (b->state /* & OtherModMask */); if (ca != cb) return ca - cb; //else if (a->state != b->state) // this behavior is to be disscussed // return b->state - a->state; else return b->range - a->range; } //////////////////////////////////////////////////////////////////////////////// keyboard_manager::keyboard_manager () { keymap.reserve (256); hash [0] = 1; // hash[0] != 0 indicates uninitialized data } keyboard_manager::~keyboard_manager () { clear (); } void keyboard_manager::clear () { keymap.clear (); hash [0] = 2; for (unsigned int i = 0; i < user_translations.size (); ++i) { free ((void *)user_translations [i]); user_translations [i] = 0; } for (unsigned int i = 0; i < user_keymap.size (); ++i) { delete user_keymap [i]; user_keymap [i] = 0; } user_keymap.clear (); user_translations.clear (); } // a wrapper for register_keymap, // so that outside codes don't have to know so much details. // // the string 'trans' is copied to an internal managed buffer, // so the caller can free memory of 'trans' at any time. void keyboard_manager::register_user_translation (KeySym keysym, unsigned int state, const char *trans) { keysym_t *key = new keysym_t; wchar_t *wc = rxvt_mbstowcs (trans); const char *translation = rxvt_wcstoutf8 (wc); free (wc); if (key && translation) { key->keysym = keysym; key->state = state; key->range = 1; key->str = translation; key->type = keysym_t::NORMAL; if (strncmp (translation, "list", 4) == 0 && translation [4]) { char *middle = strchr (translation + 5, translation [4]); char *suffix = strrchr (translation + 5, translation [4]); if (suffix && middle && suffix > middle + 1) { key->type = keysym_t::LIST; key->range = suffix - middle - 1; strcpy (translation, translation + 4); } else rxvt_warn ("cannot parse list-type keysym '%s', treating as normal keysym.\n", translation); } user_keymap.push_back (key); user_translations.push_back (translation); register_keymap (key); } else { delete key; free ((void *)translation); rxvt_fatal ("out of memory, aborting.\n"); } } void keyboard_manager::register_keymap (keysym_t *key) { if (keymap.size () == keymap.capacity ()) keymap.reserve (keymap.size () * 2); keymap.push_back (key); hash[0] = 3; } void keyboard_manager::register_done () { unsigned int i, n = sizeof (stock_keymap) / sizeof (keysym_t); if (keymap.back () != &stock_keymap[n - 1]) for (i = 0; i < n; ++i) register_keymap (&stock_keymap[i]); purge_duplicate_keymap (); setup_hash (); } bool keyboard_manager::dispatch (rxvt_term *term, KeySym keysym, unsigned int state) { assert (hash[0] == 0 && "register_done() need to be called"); if (state & term->ModMetaMask) state |= MetaMask; if (state & term->ModNumLockMask) state |= NumLockMask; if (state & term->ModLevel3Mask) state |= Level3Mask; if (!!(term->priv_modes & PrivMode_aplKP) != !!(state & ShiftMask)) state |= AppKeypadMask; int index = find_keysym (keysym, state); if (index >= 0) { const keysym_t &key = *keymap [index]; int keysym_offset = keysym - key.keysym; wchar_t *wc = rxvt_utf8towcs (key.str); char *str = rxvt_wcstombs (wc); // TODO: do (some) translations, unescaping etc, here (allow \u escape etc.) free (wc); switch (key.type) { case keysym_t::NORMAL: output_string (term, str); break; case keysym_t::RANGE: { char buf[STRING_MAX]; if (format_keyrange_string (str, keysym_offset, buf, sizeof (buf)) > 0) output_string (term, buf); } break; case keysym_t::RANGE_META8: { int len; char buf[STRING_MAX]; len = format_keyrange_string (str, keysym_offset, buf, sizeof (buf)); if (len > 0) output_string_meta8 (term, state, buf, len); } break; case keysym_t::LIST: { char buf[STRING_MAX]; char *prefix, *middle, *suffix; prefix = str; middle = strchr (prefix + 1, *prefix); suffix = strrchr (middle + 1, *prefix); memcpy (buf, prefix + 1, middle - prefix - 1); buf [middle - prefix - 1] = middle [keysym_offset + 1]; strcpy (buf + (middle - prefix), suffix + 1); output_string (term, buf); } break; } free (str); return true; } else return false; } // purge duplicate keymap entries void keyboard_manager::purge_duplicate_keymap () { for (unsigned int i = 0; i < keymap.size (); ++i) { for (unsigned int j = 0; j < i; ++j) { if (keymap [i] == keymap [j]) { while (keymap [i] == keymap.back ()) keymap.pop_back (); if (i < keymap.size ()) { keymap[i] = keymap.back (); keymap.pop_back (); } break; } } } } void keyboard_manager::setup_hash () { unsigned int i, index, hashkey; vector sorted_keymap; uint16_t hash_budget_size[KEYSYM_HASH_BUDGETS]; // size of each budget uint16_t hash_budget_counter[KEYSYM_HASH_BUDGETS]; // #elements in each budget memset (hash_budget_size, 0, sizeof (hash_budget_size)); memset (hash_budget_counter, 0, sizeof (hash_budget_counter)); // determine hash bucket size for (i = 0; i < keymap.size (); ++i) for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j) { hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK; ++hash_budget_size [hashkey]; } // now we know the size of each budget // compute the index of each budget hash [0] = 0; for (index = 0, i = 1; i < KEYSYM_HASH_BUDGETS; ++i) { index += hash_budget_size [i - 1]; hash [i] = index; } // and allocate just enough space sorted_keymap.insert (sorted_keymap.begin (), index + hash_budget_size [i - 1], 0); // fill in sorted_keymap // it is sorted in each budget for (i = 0; i < keymap.size (); ++i) for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j) { hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK; index = hash [hashkey] + hash_budget_counter [hashkey]; while (index > hash [hashkey] && compare_priority (keymap [i], sorted_keymap [index - 1]) > 0) { sorted_keymap [index] = sorted_keymap [index - 1]; --index; } sorted_keymap [index] = keymap [i]; ++hash_budget_counter [hashkey]; } keymap.swap (sorted_keymap); #if defined (DEBUG_STRICT) || defined (DEBUG_KEYBOARD) // check for invariants for (i = 0; i < KEYSYM_HASH_BUDGETS; ++i) { index = hash[i]; for (int j = 0; j < hash_budget_size [i]; ++j) { if (keymap [index + j]->range == 1) assert (i == (keymap [index + j]->keysym & KEYSYM_HASH_MASK)); if (j) assert (compare_priority (keymap [index + j - 1], keymap [index + j]) >= 0); } } // this should be able to detect most possible bugs for (i = 0; i < sorted_keymap.size (); ++i) { keysym_t *a = sorted_keymap[i]; for (int j = 0; j < a->range; ++j) { int index = find_keysym (a->keysym + j, a->state); assert (index >= 0); keysym_t *b = keymap [index]; assert (i == (signed) index || // the normally expected result (a->keysym + j) >= b->keysym && (a->keysym + j) <= (b->keysym + b->range) && compare_priority (a, b) <= 0); // is effectively the same or a closer match } } #endif } int keyboard_manager::find_keysym (KeySym keysym, unsigned int state) { int hashkey = keysym & KEYSYM_HASH_MASK; unsigned int index = hash [hashkey]; unsigned int end = hashkey < KEYSYM_HASH_BUDGETS - 1 ? hash [hashkey + 1] : keymap.size (); for (; index < end; ++index) { keysym_t *key = keymap [index]; if (key->keysym <= keysym && keysym < key->keysym + key->range // match only the specified bits in state and ignore others && (key->state & state) == key->state) return index; } return -1; } #endif /* KEYSYM_RESOURCE */ // vim:et:ts=2:sw=2